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a b s t r a c t

The motion of an electromechanical system that simulates the steady modes of operation of a generator
driven by a wind turbine is investigated by qualitative methods of theoretical mechanics. A comparatively
simple mathematical model that enables the influence of inertial, geometric, aerodynamic and electrody-
namic characteristics of the system to be taken into account is studied. An approximation formula for the
aerodynamic torque acting on the blades of the wind turbine, which is applicable in the region of high-
speed steady modes of operation, is proposed. A theoretical and numerical investigation of high-speed
steady modes is carried out using experimental data for the aerodynamic characteristics of standard
blade foils. A description of the operating modes of a small wind power system and of their evolution,
bifurcations and stability is given. Estimates of the characteristics of the optimal modes of operation are
obtained. ©2009.

© 2009 Elsevier Ltd. All rights reserved.

1. Model of the system

Consider a mechanical system consisting of a wind turbine and an electric generator. We will write the equation of motion of this
system,1–3 assuming that air flow has a constant velocity V and acts only on the blades:

(1.1)

Here � is the angular velocity of the turbine, J is the moment of inertia of the turbine, M is the aerodynamic torque, I is the current strength
in the armature winding, c is the electromechanical coupling factor, L and r are the inductance and internal resistance of the armature, and
R is the external resistance.

The quantity cI represents the torque on the axis of the armature produced by the electromagnetic forces, and c� is the electromotive
force of induction of the armature.

For the aerodynamic torque, we use the representation2,4

(1.2)

Here � is the air density, S is the area of the blades, Cx(�) and Cy(�) are the drag and list coefficients of an individual blade, b is the distance
from the effective centre of pressure of the blades to the axis of rotation, and � is the effective pitch of the blades. The instantaneous angle
of attack � and the air speed Va of the effective centre of pressure are defined by the following relations

(1.3)

This model contains numerous design parameters, particularly b, �, c, r, J and L.
It has been shown1,2 that the function M(�, �) has the following property: for each � in the range � > 0 there is a value �m(�) of the

angular velocity at which the torque reaches the maximum value Mmax.
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It should be noted that when � ∼ 80◦–90◦ relation (1.2) has a characteristic property: at comparatively low angular velocities the torque
is significantly less than Mmax and can even be negative (the torque may change from accelerating to decelerating).

2. Approximation of the aerodynamic torque

The aerodynamic torque is given by the complicated non-linear function (1.2), (1.3) of the angular velocity. A wind wheel that has blades
with a high aerodynamic quality also can have high rotational velocity, and the relation �b/V � 1 holds for its preferential operating modes
and can be used to derive a simple calculation formula for the aerodynamic torque. We will illustrate this possibility for the case when the
pitch is close to �/2. Putting � = �/2 − �, � � 1 and expanding the expression for the torque in 1/� to second-order terms we obtain

(2.1)

A subscript zero indicates that the values of the functions Cx(�) and Cy(�) and their derivatives were taken at � = 0. Here we utilized the
fact that for symmetrical foils Cx is an even function, and Cy is an odd function of the angle of attack �.

We also note that the following relations hold for foils with a relatively high quality

(2.2)

(2.3)

Hence for sufficiently small values of � we obtain

The presence of the non-zero coefficients A1, B1 and B2 in (2.1) distinguishes this formula from the formulae usually used in wind power
engineering (see, for example, Ref. 5).

Using an approximation formula, we can estimate the value �m (the value �0) of the angular velocity at which the torque reaches a
maximum (vanishes):

(2.4)

3. Steady motions

The equations of the steady motions of the dynamical system under consideration have the form

(3.1)

(3.2)

In Fig. 1 a graph of (3.1) is shown in the phase plane (� = b�/V, I) for the pitch value � = 0.1. The experimental aerodynamic characteristics
Cx(�) and Cy(�) (Ref. 6) of the standard NACA 0012 airfoil were used in the calculation. The small circles show the values calculated from
these data using formula (1.2). The solid line depicts the approximation relation (2.1). Here we have

Straight lines given by (3.2) are shown for two values of the external resistance when b = 0.2 m, S = 0.05 m2, r = 10 �, c = 0.5 V s, V = 5 m/s
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Fig. 1.

The points of intersection are fixed points of the system for the corresponding value of R. It can be seen that there is a range of values
of R in which the system has several fixed points. This range can be fairly broad. The hysteresis previously described in Ref. 1, which can
apparently disturb the normal functioning of the system, is attributed specifically to this phenomenon.

We will henceforth consider the range of relatively high angular velocities (which are most preferable from the practical point of view).
This enables us to use approximation formula (2.1) for the aerodynamic torque. In this range there are no more than two fixed points (Fig. 1).
We will use P1(�1, I1) to denote the fixed point that corresponds to the higher angular velocity, and we will use P2(�2, I2) to denote the
other fixed point.

We will trace the evolution and bifurcations of the fixed points P1 and P2 as the parameters R and L vary.
When an additional consumer of electrical power is connected (as a rule, in parallel), the external resistance R decreases and may vanish

(when short-circuit occurs). Accordingly, if the internal resistance r of the generator is sufficiently small, there is a value R* of the external
resistance for which the fixed point P1 merges with P2. We have

(3.3)

Therefore, when R < R*, the fixed points P1 and P2 do not exist, and there is no “preferable” operating mode.
It can be shown that the stability conditions have the form

(3.4)

Hence it follows that the fixed point P2, as long as it exists, is a saddle point.
Consider the point P1.
In the case in which L ≤ L* = J(R* + r)2c−2, the point P1 is asymptotically stable over the entire range of values of the external resistance

R > R*. If L > L*, the nature of the stability depends on the relations between the parameters.
We will determine the value Rm of the resistance at which the fixed point P1 corresponds to the maximum of the aerodynamic torque

(�1 = �m) (Fig. 1):

If L > L* and R* < R ≤ Rm, the stability conditions (3.4) for the point P1 may be violated. In particular, if

the first former of the conditions indicated is violated. When the value L1 is superseded, an Andronov–Hopf bifurcation occurs. The nature
of this bifurcation is specified7 by the sign of the following expression
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Note that in the range of values of the external resistance considered,

and the second condition in (3.4) unquestionably holds for P1. Taking relation (2.2) into account, we can show that Q > 0. This means that
merging of an unstable cycle with a stable focus accompanied by a loss of stability by the latter (a hard loss of stability) occurs as L is
increased.

A numerical analysis reveals that this unstable cycle emerges from the separatrix loop of the saddle point P2.
In the range Rm < R < ∞, the fixed point P1 is asymptotically stable for any values of the inductance. However, the nature of the decay

in the vicinity of this fixed point depends on L: at sufficiently small and sufficiently large values of L, this fixed point is a node, and at
intermediate values of L, it is a focus.

In the case of an open circuit (R = ∞), the point P1 is asymptotically stable at any value of L and corresponds to rotation of the turbine
with angular velocity �0. The current, of course, is equal to zero in this case.

It is also of interest to examine the influence of the free-stream velocity V on the steady modes of operation. It follows from equality
(2.1) that M ∼ V2. In addition, �m = V�m, and �* = V�*, where �* and �m do not depend on V. At the same time, the “electrical” parameters
(r, c and R) do not depend on V. Therefore, for any value of the external resistance, there is a minimum value of the wind velocity

(3.5)

below which the fixed points P1 and P2 are absent. Here B = B2V−4 is a quantity that does not depend on V.

4. Optimization

One of the output characteristics of a wind-turbine is the torque on the shaft. Therefore, the quantity Mmax may be of interest for a
specific class of problems. Using the approximation formula (2.1), we obtain (setting, for simplicity, � = 0)

(4.1)

At the same time, in certain situations (for example, when a wind-turbine is used to drive a pump etc.) the mechanical power N “trapped”
by the wind turbine (N = �M) is important. The problem of maximizing this quantity is discussed in the literature devoted to wind power
systems. From equality (2.1) we have

(4.2)

The power reaches a maximum at the angular velocity �n. We estimate it for � = 0:

In principle, the direction in which the blades should be turned in order to ensure an increase in the torque or the mechanical power
can be found using approximation formulae (2.1) and (2.4).

Fig. 2.
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Note that the primary characteristic of a wind power system is the electrical power E = RI2 produced by it. Owing to the fact that the
previously described closed model1,2 relates the electrical and mechanical characteristics of the system, it is now possible to represent this
quantity at operating mode in the following form (taking Eqs (3.1) and (3.2) into account)

In the general case, the maxima of the functions N and E are clearly reached at the different values �n and �e of the angular velocity,
where �e > �n.2

Fig. 2 presents approximation graphs of N(�) and E(�) for the system parameters indicated. For comparison, the dashed curve depicts
the function M(�) multiplied by a scale factor.

Despite the fact that the proposed model is relatively simple and “rough,” it can be used to carry out an effective qualitative analysis
of a system and thereby to narrow the region in which a more detailed investigation involving complex models that require large-scale
numerical computations is required.
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